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Ferroelectric phase transitions in a molecular-like array of 
quantum dots 

A 0 Govorov and A V Chapli 
Institute of Semiwndnuor Physics, Russian hademy of Sciences, Siberian Branch 630090 
Novosibirsk-90. Russia 

Received 5 October 1993 

Abstrad A model of a ‘molecular’ 2D crystal of quantum dots is considered. Each elementary 
CW wnlains two dots connecked by tunnelling. Such an m y  of two-level quaotum systems 
with sbongly non-linear polarimbility demonsbates the f emla t r i c  (antifemlectric) phase 
traositions due to Coulomb interaction. We find the energy of the ground state, spantanems 
moment and phase hansition t e m p ”  in the self-consistent field approximation. Optical 
manifestations of the phase transitions in the k-infrared absorption am also investigated. 

1. Introduction 

The possibility of spontaneous polarization of two-dimensional (m) arrays of quantum 
dots (QDS) has been discussed in the current literature [l-31. The simplest models have 
been considered and the results do not look very encouraging from the viewpoint of 
experimental realization. Spontaneous polarization has been predicted for quantum dot 
arrays with isotropic [l] and anisotropic [Z] parabolic confinement (the latter case is the 
so-called ‘quantum dashes’) and for dipole-dipole interaction between dots. The validity 
of these approximations can hardly be justified in the recent existing structures. Also, the 
thermdynamics of the discussed transitions have not been considered in the papers cited 
above. 

In the present paper we consider a different model of a QD array which is free from the 
above-mentioned limitations of parabolic confinement and dipole interaction. Nonetheless 
the model allows analytical solution in the framework of self-consistent field approximation 
(SCFA). In fact, we use the classical idea of a two-well potential from the theory of 
ferroelectricity and propose a ‘molecular’ lattice of QDs where each elementary cell contains 
two dots coupled by tunnelling (figure 1). We hope that the technological difficulties of 
fahricating such a struchm are not insurmountable for modern electronic lithography. 

Each ‘molecule’ is considered as a two-level quantum system described by bound and 
antibound states. The non-linear polarizability of the system is the main difference between 
the subject of this paper and that of [1,2]. We suppose that there is one electron per 
cell and take into account the Coulomb interaction between ‘molecules’, hut we ignore the 
intercell tunnelling. We describe the thermodynamic characteristics of the phase transitions, 
collective excitations and far-infrared (m) absorption in the proposed structure. 
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Figure 1. Molecular-like lattices of@:  (a) square lattice with an anfifemlecttic ;urangement; 
(b) hiangular lattice with a fmlechic  m g e m e n t ;  (e) double-well potential of an elementary 
d. 

2. Phase transitions at T = 0 

Consider the 2D structure of paired QDs (“okcules’) depicted in figure l (u)  (square lattice) 
or figure l (b )  (triangular lattice). Within each molecule the electron moves in the double- 
well potential (figure l(c)): 

U(T) = UO(T - d/2)  + UO(T + d/2)  

where T = (x, y) is the ZD radius vector, d is the distance between QDs in the molecule and 
UO(T) is the confining potential of a single dot. 

We neglect tunnelling between different molecules and suppose the intra-molecular 
tunnelling (between the neighbouring dots) to be sufficiently small. This allows us to 
use the tight-binding approximation to calculate the molecular wavefunction. The electron 
wavefunction of a single dot at the a-lattice site is @jU(r), j = 1 . 2  

@le = l/lo(~ - a, - d / z )  +h = $o@ - a, + 4 2 )  
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where a, is the lattice vector, CY corresponds to the pair of integer numbers n, m (% = 
e l n + e p ,  where el and e2 are basis vectors), j is the number of dots in a molecule and +O 
is a single dot wavefunction of the lowest (for simplicity) energy level. In the tight-binding 
approximation the overlapping integral S = (*le I+&) is small: S < 1. 

The Coulomb interaction of the molecules creates an electrostatic potential hint(r) that 
can shift the single-electron energy levels in each dot. We denote these new levels of the 
cyth molecule by El ,  and I&, respectively, for dots 1 and 2. These are levels not yet 
affected by the intra-molecular tunnelling. When the tunnelling is taken into account, we 
obtain, obviously, 

where V is the tunnelling amplitude between dots 1 and 2. We suppose that V is a constant 
independent of $int because << U (U is the initial confining potential). In the two-level 
approximation we have for the wavefunctions 

+$ = A:*iC + B : h  

(2) A, * - [  - 1 + (fz)2/Vz]-'/2 B,' = ~ [ l +  V2/(fz)2]-'/2 

To find the unknown parameter An in the SCFA we have to calculate &"I in the Hamee 
form: 

In this integral we choose functions with the lowest energy +i in order to find the ground 
state of the system. In principle, and this is the essence of the SCFA, one has to find 
such a distribution Ap over the lattice sites [ac} that provides the minimum of the total 
energy. This programme cannot be. exactly realized. Instead, we wish to guess the ground- 
state structure, to estimate the energy and to demonstrate that under certain conditions the 
spontaneously polarized state lies energetically lower than the non-polarized paraelectric 
state. Thus, we find the shifts of energy levels of a two-level system at the cyth site due to 
additional energy #int and we obtain 

The coefficients AB and Bp depend on AB (see equation (2)); hence, equation (3) is the 
system of non-linear equations for unknown values Ap. In the trivial limiting case L + 00 

( L  is the lattice period) the intercell interaction disappears and the structure of the ground 
state is evident: all electrons occupy the lowest state with E- = EO- V ,  Ap = B,q = l/a, 
A# = 0 for all sites. This is the paraelectric non-polarized state. Let us now examine the 
antiferroelectric state depicted in figure l(a). Obviously we gain the Coulomb energy at 
least for L >> d when the dipole-dipole approximation is applicable. However, localization 
of an electron in a certain dot results in increasing energy from EO - V to Eo. Thus, the net 
effect has to be estimated. We give such estimations for the square and triangular lattices, 
where one can expect (see [I]) antiferroelectric and ferroelectric states respectively. 
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2.1. Square lattice 

We look for solution of equation (3) in the form 

A 0 Govorov and A V Chnplik 

Aa zz A(a,) = Ao(-l)"' a, = eln +em el llz ezlly. 

In the following we suppose that the condition d << L is satisfied, which gives us an 
opportunity to solve our problem analytically; however, equation (3) is applicable in a 
general situation when numerical methods should be used. We obtain from equation (3). 
for d << L, 

where x = A$V. Figure 2 demonstrates the graphical solution of equation (4). If 
the parameter y does not exceed a critical magnitude yss = l/Cq, we have only the 
solution A0 = 0. For y > yq the second solution appears, which corresponds to the 
spontaneously polarized state. Note that the dipoledipole approximation and the condition 
of the phase transition can be satisfied simultaneously in the case of small tunnelling 
amplitudes: V < C,,(e2/~L)(d2/L2) ,  d << L, V << C,,($/cL). 

8.00 , 

z 
-8.00 , , , I  I I I , ,  . I . .  . , ..., . . . . . , ,4, 0 ' ~ .  . . , a ,  

-8.00 -4100 0.00 

Figure 2. Graphid solution of equation (4). 9 = C,y , 

Equation (4) obtained in the dipoledipole approximation overestimates y in the 
d .  This unpleasant tendency may be compensated by decreasing the tunnelling 

The dipole moment and the total energy per elementary cell (the zero energy corresponds 

situation L 
amplitude V. The value (e@/ V stands for the polarizability of the QD (cf [3]). 

to the non-polarized state) are 

P = $edg(x) Btot/V = 1 - J t x 2 +  1 + i x g ( x ) .  (5) 
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-1 .50 I I, I ,  I I  I I o  , ,  , ,  , , ,  , , ,,, , , , ,  I , I I  , , ,  , ! , ,  , ,,I-, 
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F w e  3. Sponmeous polarization P (Po = 4ed) and gmund-state energy E,, for the 
antifemlectric state (curve 1) and the fmoelectcic state (curve 2) of the square lanice. and for 
Ihe ferroelectric state (curve 3) of  the triangular lanice. 

At the threshold y + y, P o( ( y  -y#’, E,, a ( y  -y$ (figure 3). If we had supposed 
the ground state to be ferroelectric, i.e. A= A0 for any n, m, we would obtain equation (4) 
with C?, = 4 C(n’+ m2)-3/2 2: 1.13 instead of Css. In this case the energy is higher than 
for the antiferroelectric case because Css 

2.2. Triangular lattice 

The ground state is ferroelechic. Equation (4) describes the situation with Css substituted 
by C, = CB s i3 2: 3.19 where gp are the vectors of the triangular lattice. The phase 
transition occurs at y t y, = 1/C, and line 3 in figure 3 qualitatively describes the y-  
dependence of the spontaneous momentum. For the antiferroelectric state in the triangular 
lattice, one obtains c, i 0 and the solution with Aa # 0 does not exist. 

I?% (figure 3). 

3. Influence of an external electric field 

In a uniform external electric field F parallel to the vector d the potential -eF . T has to 
be added to &. Equation (4) takes the form (for the triangulx lattice) 

x = eFd/V + C,yg(x). (6) 
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The numerical solution of equation (6) gives the S-shaped curve depicted in figure 4(a) 
(hysteresis). A more complicated picture arises in the square lattice. The solution has the 
form Ap = AI for even m (sublattice 1) and Ap = AZ for add m (sublattice 2). For 
F = 0 we have A, = -A2 i.e. total compensation of the spontaneous polarization of two 
sublattices. For F # 0, two equations for A1 and A2 can be obtained from equation (4): 

A 0 Govomv and A V Chaplik 

where XI = Al/V,  xz = Az/V, bi = +(eq & Cq). The system (7) can be solved 
numerically. The spontaneous dipole moment depends on F in a step-like way (see figure 4). 

1.00 

P/PQ 
0.50 

0.00 

-050 

-1.00 

1.5 

1 .m 

c.,7 = 3 
0.50 

0.00 

-0.50 

-1.00 - . z z 

Fimre 4. Spontaneous moment in an extemal electric field (i = eFd/  V): (a) triangular latrice; 
(b) square lattice. 

4. Phase transitions at T # 0 

The free energy can be written in the two-level approximation 

2 4  P2 
+?==-- L3 T In [exp (+) + exp (+)I ci = css or c,. 

The first term in equation (8) represents the energy of the Coulomb interaction in the dipole 
approximation, and P is the electric momentum per elementary cell. Both E* and P 
depend on A but it is more convenient to choose P as an independent variable. In the near 
vicinity of the transition temperature TO we obtain the well known results from the theory 
of ferroelectricity 141: 

3 = constant + EPZ+ BP4 
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where @(y) is a positive function for Ciy > 1. Spontaneous polarization occurs if U < 0 
P2 = -426. The phase transition temperature and the coefficient CY for T -+ TO are 

In fact, one can obtain all results for finite T by replacing Ci --f Citanh(SE/2T), 
SE = E+ - E- = (4V2 + Ai)'/' in the formulae for T = 0. 

Let us estimate the temperature of the phase transition. Choosing the characteristic 
parameters L = 1000 A, d = 200 A, E = ~ ( E S  + 1) and for GaAs 6s = 13, we obtain the 
estimate TO Y 1 K and 3 K for square and triangular lattices, respectively. These values 
were obtained in the limit V << eZdZ/6L3, when r, + Cie2d2/eL3. 

5. Far-infrared absorption 

We now calculate the absorption of long-wavelength radiation by the collective modes of 
the QD lattice. If & eXp(iot) iS the electric field of the incoming FIR wave, the effective 
field at each lattice site is (Fo+ & I )  exp(iot) where 4.d takes into account the contribution 
from surrounding cells. The dipole moment of an elementary cell equals 

(ed)'SE tanh(SE/2T) &, + P, = - 
2 6E2-wZ 1+A2f4V2'  

The value 
substitution in equation (10) we obtain P, = -K/(& - &)&, where 

can usua~y be expressed via P as (summation over lattice sites). After 

(11) 

The last term in is the depolarization shift. For the square lattice we have to substitute 
into equation (11) the constant C* = cq. At T > TO (paraelectric state), A = 0 and 
orel ' - - 4Vz[1 - cSqy tanh(V/T)]. Note that &a remains finite when T + because the 
instability in the square lattice gives riie to the in-plane momentum q = x / L  (see [l]) while 
FIR absorption is a process with q N 0. Thus, &(T + TO) = 4V2y(Ci - ci)tanh(V/To). 
The temperature dependence of w,, depicted in figure 5 (curve I), has a singularity of the 
type o=(T) -%$(TO) 0: k*lT - 

In the triangular lattice the instability caused by the Coulomb interaction occurs at 
q = 0. The resonant frequency given by equation (11) (C* = C,) tends to zero when 
T + To : (T - i"o)'p (figure 5, curve 2). 

(ed)'SE tanh(GE/2T) 2C'e'd'SE tanh(GE/2T) 
=4V2 + A' ,qE(l + A2/4v2) . K = -  

2 A2 + 4V2 

with k+ for T > 5 and k- for T < TO. 

6. Sandwich structure with dlloz 

A sandwich structure where molecular-like QDs are arranged one under another may be 
technologically simpler. In this case the dipole moments are parallel to the z direction and 
the problem is similar to the king model but with long-range interaction.~It is evident that 
the antiferrcelectric state is energetically preferable. The results follow from equation (4) 
with a different numerical factor: C1 = 0.62 substituted for Csq. 
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7. Conclusion 

We have considered in the SCFA the possibility of spontaneous polarization in an array 
of molecular-like quantum dots. Both ferroelectric and antiferroelectric states may occur, 
depending on the lattice type. One of the optical manifestations of the phase transitions is 
the T-dependence of the resonant frequency. 
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